查看原文
其他

EnSM:如何解决石墨基硫化物全固态软包电池的快充析锂问题?

点击左上角“锂电联盟会长”,即可关注!

一、研究背景:

随着液态电解液的锂离子电池在汽车上的应用日益广泛,新能源汽车近年来面临着越来越多的安全问题。易燃的有机液体电解质容易发生事故,导致电池起火爆炸。基于无机硫化物固态电解质的全固态电池,具有高热稳定性,有望成为下一代本征安全的乘用车动力电池。同时,石墨作为商业化二次电池的主要负极材料,因其极好的Li+嵌入/脱出可逆性、充足的克容量(372 mAh g-1)和丰富的资源,在全固态电池中也受到了广泛关注。

然而,由于锂离子在石墨中插层的工作电位低、动力学缓慢,石墨的析锂所造成的短路和性能下降被认为是锂离子电池快充的主要障碍。在全固态软包电池中上述情况可能更糟,因为固态电极、固体电解质层面临更多的挑战:更差的固固接触、不均匀的电子-离子导电网络、活性材料和固体电解质之间更大的界面电阻、均一性/致密度不足的大面积电解质层等。针对这些问题进行的研究较少,亟需提出针对快充时全固态电池中消除石墨析锂的策略。

二、工作介绍

近日,中国科学院宁波材料技术与工程研究所姚霞银课题组利用一种具有快速Li+动力学的核壳微结构石墨@Li6PS5Cl解决了该问题。通过三电极系统、恒电流间歇滴定技术和原位拉曼测量,分别验证了该策略对电极的微结构/成分的调控、电池析锂的抑制作用、负极电压滞后的降低和石墨的快速相变的促进作用。通过将LiCoO2正极和石墨@Li6PS5Cl负极匹配,在控制测试温度30℃、NP=1.25、0.3C、2.4 mAh cm−2条件下,原理电池可稳定循环650次,平均库仑效率超过99.95%,容量保持率达到72.5%。此外,该策略使得原理电池在高充电电流密度4.8 mA cm−2或高容量12.5 mAh cm−2下,甚至在软包电池中(40×60mm,61.6 mAh,2.6 mAh cm−2,0.33 C)都被证明具有良好的性能。该文章发表在国际知名期刊Energy Storage Materials(DOI: 10.1016/j.ensm.2022.11.023)。

三、内容表述

图1. (a) 在不同速率下,使用干混合石墨负极graphite-Li6PS5Cl的全固态电池的充放电曲线。1 C = 2.41 mA cm−2,120 mA g−1,电池在1 C充电时发生短路。(b) 干混合石墨负极graphite-Li6PS5Cl全固态电池的充放电三电极曲线,负极侧对锂电势在1 C充电时低于0 V。干混合石墨负极graphite-Li6PS5Cl的(c) EBSD和(d) EDS映射图像。

图2. (a) graphite@Li6PS5Cl制备路线示意图。(b) 核壳微结构graphite@Li6PS5Cl的EBSD和 (c-d) EDS映射图。graphite@Li6PS5Cl颗粒的 (e) TEM和 (f) HRTEM图像。graphite-Li6PS5Cl和graphite@Li6PS5Cl的 (g) 离子、电子电导率测试,(h) GITT放电曲线和极化图,(i) 原位EIS测试。

图3. (a) graphite-Li6PS5Cl和 (b) graphite@Li6PS5Cl在2.0 V至0.01 V范围内第二次Li+插层过程表面的operando-Raman光谱图像。

图4. (a) 不同倍率下Li/Li6PS5Cl/负极电池的充放电曲线和 (b) 循环性能。电池在0.1 mA cm−2下充电。(c) 不同倍率下LiCoO2/Li6PS5Cl/graphite@Li6PS5Cl电池的充放电曲线。1 C = 2.41 mA cm−2,120 mA g−1。(d) LiCoO2/Li6PS5Cl/graphite@Li6PS5Cl电池电极的充放电曲线和三电极电压图。(e) LiCoO2/Li6PS5Cl/graphite@Li6PS5Cl的循环性能。

图5. (a) LiCoO2/Li6PS5Cl/graphite@Li6PS5Cl电池在不同倍率下的充放电曲线。1 C=4.82 mAcm−2, 120 mA g−1。(b) 0.03 C时LiCoO2/Li6PS5Cl/graphite@Li6PS5Cl和LiCoO2/Li6PS5Cl/graphite-Li6PS5Cl电池的恒流电压分布,1 C = 14.47 mA cm−2,120 mA g−1。(c) 由全固态软包电池供电的风扇。(d) LiCoO2/Li6PS5Cl/graphite@Li6PS5Cl软包电池的充放电曲线和 (e) 循环性能。

图6. (a) LiCoO2/Li6PS5Cl/graphite@Li6PS5Cl软包电池的内部极片和电解质照片。(b-e) 软包电池的截面SEM和EDS。

图7. (a) graphite -Li6PS5Cl析锂过程,(b) graphite@Li6PS5Cl的Li+插层过程,(c) 电子-离子混合电导的Li6PS5Cl示意图。

四、结论

为抑制快速充电时全固态电池的析锂行为,本工作提出了一种溶剂辅助工艺,以制备出较好的石墨负极成分和微观结构:

1、在较高的充电电流密度下,溶剂辅助石墨具有较低的电压极化和较快的相变速度,加速了锂离子在石墨中的嵌入。

2、通过溶剂辅助法再析出的Li6PS5Cl电解质同时具备了离子电导和电子电导双功能。

3、通过三电极系统、恒电流间歇滴定技术和原位拉曼测量,分别验证了该策略对电极的微结构/成分的调控、对充电末期负极的锂离子扩散速率提升作用、和负极电压滞后的降低、石墨的快速相变的促进作用、以及对电池快充析锂的抑制作用。

4、在0.72 mA cm−2和2.4 mAh cm−2条件下,全固态原理电池在650次循环后表现出99.95%的平均库仑效率和72.5%的容量保持率。

5、在高电流密度条件下,软包电池(61.6 mAh,2.6 mAh cm−2,0.33 C)同时具有较好的循环性能。

该研究不仅为提升高面积容量石墨基硫化物全固态电池的快速充电性能提供了一种简便易行的方法,而且通过深入分析有助于全面了解复合石墨负极在全固态电池快速充电时的作用机理。

五、作者简介

张秩华:中国科学院宁波材料技术与工程研究所博士后。2019年6月毕业于中国科学院大学宁波材料技术与工程研究所,获工学博士学位。2020年6月起在中国科学院宁波材料技术与工程研究所从事博士后科研工作。

姚霞银:博士,研究员,博士生导师,中国科学院宁波材料技术与工程研究所固态二次电池团队负责人。2009年毕业于中国科学院固体物理研究所&宁波材料技术与工程研究所,获工学博士学位,并获中国科学院院长优秀奖。同年7月起在中国科学院宁波材料技术与工程研究所从事科研工作,期间曾先后在韩国汉阳大学、新加坡南洋理工大学、美国马里兰大学从事储能材料研究。目前研究兴趣集中于全固态二次电池关键材料及技术研究,迄今为止,与合作者一起在Advanced Materials、Nano Letters、Advanced Energy Materials、Nano Today、ACS Nano、Nano Energy、Energy Storage Materials等材料及新能源领域期刊上发表论文130余篇,申请发明专利50余项。担任中国化工学会第二届储能工程专业委员会委员,《储能科学与技术》杂志第三届编辑委员会委员。

锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱ibatteryalliance@163.com。


相关阅读:

锂离子电池制备材料/压力测试

锂电池自放电测量方法:静态与动态测量法!

软包电池关键工艺问题!

一文搞懂锂离子电池K值!

工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!

揭秘宁德时代CATL超级工厂!

搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!

锂离子电池生产中各种问题汇编

锂电池循环寿命研究汇总(附60份精品资料免费下载)

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存