查看原文
其他

Chem. Eng. J: 磁性混合MOFs吸附和ROS主导的催化氧化作用在激活PMS中的协同作用用于选择性地去除OPPs

MOFs在线 2023-02-21

The following article is from 水处理文献速递 Author environ 2023

第一作者:Weisheng Zheng

通讯作者:孙越 教授

通讯单位:东南大学土木工程学院

DOI:10.1016/j.cej.2023.141668









全文速览

通过过硫酸氢盐(PMS)激活的异质催化系统选择性地去除有机污染物已经引起了水净化领域的浓厚兴趣。在此,我们以Fe3O4为核心,制备了一种具有双层MOFs(ZIF-67和UiO-66)的核壳磁性复合材料(MZU)。为了展示对有机磷农药(OPPs)的选择性去除,选择了苯基膦酸(PPOA)作为目标污染物,MZU/PMS系统在30分钟内对其去除率接近100%。所得的MZU表现出了活性氧(ROS)对PMS的强大激活作用,包括SO4自由基点、自由基点OH和1O2,并在降解过程中对产生的磷酸盐有高效的吸附性能。有吸引力的是,在混合溶液中,PPOA的降解速率常数明显高于其他五种OPPs,这取决于PPOA和MZU之间的强相互作用。这项研究构建了一个具有高效协同吸附和PMS活化的迷人策略,用于选择性地去除复杂水系统中的目标污染物。








图文摘要







引言

我们报告了一种核壳结构的磁性复合材料,即Fe3O4@ZIF-67@UiO-66(MZU),它是通过逐层自组装的方式合成的,可以开发多功能的混合材料。我们的工作表明,所制备的MZU具有高效的协同吸附-催化作用,通过PMS的激活,表现出令人印象深刻的去除OPP的性能。Zr-MOF的外壳使催化剂具有良好的稳定性和对生成的磷酸盐的出色吸附力。耐人寻味的是,磁性Fe3O4纳米颗粒(NPs)的引入可以使其迅速与水分离,并通过电荷转移促进Co(III)/Co(II)的循环。通过比较六种选定的OPP的降解效率,催化剂的吸附能力对于在MZU/PMS体系中选择性地氧化目标OPP至关重要。总之,MOF@MOF混合材料可以结合ZIF-67和UiO-66的单独功能,在强配位键和异质催化的基础上完成目标污染物的选择性去除。这一策略为异质AOP系统中的多功能催化剂设计铺平了道路,以去除水溶液中的新兴污染物。






同位素标记技术
图文导读

Fig. 1. (a) Schematic illustration of the preparation process of MZU. SEM images of (b) Fe3O4@ZIF-67 and (c) MZU. TEM images of (d) Fe3O4@ZIF-67 and (e) MZU. (f) HAADF-STEM image and (h-n) element mapping of MZU.Fig. 2. (a) The XRD patterns, (b) FTIR spectra of Fe3O4@ZIF-67, UiO-66 and MZU, (c) N2 adsorption–desorption isotherms of Fe3O4@ZIF-67 and MZU, and (d) magnetization curves of Fe3O4, Fe3O4@ZIF-67 and MZU.Fig. 3. (a) PPOA removal efficiencies in different catalysts for activating PMS, (b) adsorption removal efficiencies of PPOA with different catalysts, (c) residual PMS concentration in different systems, and (d) the corresponding concentration of phosphate in different systems (Reaction conditions: [PPOA] = 0.1 mM, [catalyst] = 0.5 g/L, [PMS] = 1.0 mM, and T = 30 °C).Fig. 4. PPOA removal efficiencies in different Zr/Co ratios (a) and the corresponding pseudo-first-order kinetic rate constant (b); effects of initial pH (c) and inorganic anions (d) on PPOA removal (Reaction conditions: [PPOA] = 0.1 mM, [catalyst] = 0.5 g/L, [PMS] = 1.0 mM, [anion] = 10 mM, and T = 30 °C).Fig. 5. (a) Quenching effects on PPOA degradation by different scavengers (Reaction conditions: [PPOA] = 0.1 mM, [catalyst] = 0.5 g/L, [PMS] = 1.0 mM, [TBA] = [EtOH] = 1.0 M, [FFB] = 0.1 M, and T = 30 °C), and (b) EPR spectra of MZU/PMS system with DMPO and TEMP as a spin-trapping agent; (c, d) high-resolution XPS spectra of Co 2p and Fe 2p before and after reaction.Fig. 6. Schematic diagram of the synergy adsorption-PMS activation of the MZU/PMS system.Fig. 7. (a) Molecular structure of six studied OPPs, (b) adsorption removal performance of OPPs with MZU, (c) degradation efficiency of each OPP in a single solution, and (d) TOC removal rate of OPPs (Reaction conditions: [OPP] = 50 μM, [catalyst] = 0.5 g/L, [PMS] = 1.0 mM, and T = 30 °C).Fig. 8. Degradation efficiency of each OPP in a mixed solution of six OPPs (a) and the corresponding pseudo-first-order kinetic rate constant (b) (Reaction conditions: [OPP] = 50 μM, [catalyst] = 0.5 g/L, [PMS] = 1.0 mM, and T = 30 °C).








研究意义

在这项研究中,我们成功地设计和制造了一种核壳磁性混合MOFs,以激活PMS,实现高选择性的OPP去除。在异质PMS活化体系中,MZU显示了来自UiO-66和ZIF-67的吸附和催化能力的协同效应。作为目标污染物,PPOA在六种OPP的混合物中被MZU/PMS系统选择性地氧化,这是因为PPOA通过强的Psingle bondOsingle bondZr bond在催化剂表面富集。此外,在MZU激活PMS的过程中,发现自由基和非自由基的途径同时存在。更重要的是,催化剂的UiO-66层不仅可以抑制Co的浸出,还可以在降解过程中有效吸附产生的磷酸盐。总而言之,这项研究可能为通过创造具有协同吸附-异质催化作用的理想材料来选择性地去除目标污染物提供了新的见解。

文献信息

Weisheng Zheng, Yue Sun, Yingpeng Gu, Synergism of adsorption and ROS-dominated catalytic oxidation in activating peroxymonosulfate by magnetic hybrid MOFs for selective removal of organophosphorus pesticides, Chemical Engineering Journal, 2023, https://doi.org/10.1016/j.cej.2023.141668


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存